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Abstract

Bulk peculiar flows are commonplace in the Universe, with many surveys reporting their presence on scales
spanning between few hundred and several hundred Mpc. However, the sizes and the speeds of some of these bulk
flows are well in excess of those theoretically anticipated, which has made them a potentially serious problem for
the ACDM model. Having said that, essentially all the available theoretical studies are Newtonian, or quasi-
Newtonian, in nature, and both bypass a key feature of peculiar motions, namely the gravitational contribution of
the peculiar flux. To begin with, recall that bulk flows are matter in motion and that moving matter means nonzero
energy flux. In relativity energy fluxes gravitate, but the gravitational input of the peculiar flux has been largely
bypassed. As we will show here, when the flux contribution to the gravitational field is accounted for, linear
peculiar velocities grow considerably faster than in the Newtonian/quasi-Newtonian studies. Therefore, general
relativity could naturally relax the current ACDM limits to accommodate the reported fast bulk flows.

Unified Astronomy Thesaurus concepts: Cosmology (343); Large-scale structure of the universe (902)

1. Introduction

An open question, which is treated as a potential problem
for the concordance cosmological model, is the observed bulk
peculiar flows. Many surveys have repeatedly confirmed the
presence of these large-scale motions, with typical sizes and
speeds of few hundred Mpc and few hundred km s,
respectively (P. A. R. Ade et al. 2014). Although many of
the reported bulk flows are within the ACDM requirements
(e.g., see A. Nusser & M. Davis 2011; S. J. Turnbull et al.
2012; U. Feindt et al. 2013; Y.-Z. Ma & D. Scott 2013;
T. Hong et al. 2014; M. 1. Scrimgeour et al. 2016; F. Qin et al.
2019), there are an increasing number of surveys reporting
sizes and speeds in excess (or well in excess) of the standard
model (e.g., see M. J. Hudson et al. 2004; R. Watkins et al.
2009; A. Kashlinsky et al. 2010; G. Lavaux et al. 2010;
J. Colin et al. 2011; A. Salehi et al. 2021). Among them are the
recent surveys of R. Watkins et al. (2023) and of A. M. Whit-
ford et al. (2023), which used the CosmicFlows-4 data to
report bulk flows considerably faster than expected. Interest-
ingly, the surveys that agree with the ACDM report bulk flows
on relatively small scales, roughly up to 100 ~~' Mpc, while
those that disagree extend beyond the aforementioned thresh-
old. Then, taking the latter reports at face value and assuming
that the systematics are not responsible for the discrepancies,
one wonders whether such fast and deep bulk peculiar motions
could seriously undermine the ACDM paradigm.

Before resorting to drastic measures, however, it might help to
take a step back and look more closely at the theoretical models
used to predict the features of the observed bulk flows. These are
believed to have started as weak peculiar-velocity perturbations
around recombination, when structure formation begun in
earnest. It is the increasing inhomogeneity of the postrecombina-
tion Universe that triggered, sustained, and amplified the initial
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velocity perturbations to the bulk flows observed today. Never-
theless, the picture seems incomplete, since the theoretically
predicted velocities are considerably slower than those reported
in M. J. Hudson et al. (2004), R. Watkins et al. (2009),
A. Kashlinsky et al. (2010), G. Lavaux et al. (2010), J. Colin et al.
(2011), A. Salehi et al. (2021), R. Watkins et al. (2023), and
A. M. Whitford et al. (2023). Having said that, the ACDM
predictions are based entirely on Newtonian studies, which by
default bypass the gravitational input from a key feature of
peculiar motions, namely from their energy flux.

Peculiar flows are nothing else but matter in motion, and
moving matter carries energy flux. In relativity, as opposed to
Newtonian physics, energy fluxes contribute to the energy-
momentum tensor and therefore to the local gravitational field
(e.g., see C. G. Tsagas et al. 2008; G. F. R. Ellis et al. 2012).
Without accounting for the gravitational input of the peculiar flux,
the Newtonian studies have led to the relatively moderate growth
rate of v o /3 for the linear peculiar-velocity field (v) after
equipartition (e.g., see P. J. E. Peebles 1980; T. Padmanabhan
1993; S. Dodelson 2003). The literature also contains a few quasi-
Newtonian linear treatments that recover the Newtonian growth
rate (see Section 3.1 below). However, despite their relativistic
initial appearance, these studies also reduce to Newtonian, because
they also bypass the (purely general relativistic) contribution of the
peculiar flux to the gravitational field. Although this is unavoidable
for the purely Newtonian studies, in their quasi-Newtonian analogs
the reason is the severe restrictions imposed upon the perturbed
spacetime. These constraints may simplify the calculations, but
their repercussions seriously compromise the relativistic nature of
the study.

It should be noted that the problematic nature of the highly
restrictive quasi-Newtonian setup has been known and noted,
although not widely, at least since G. F. R. Ellis et al. (2012).
The interested reader is referred to Section 6.8.2 in
G. F. R. Ellis et al. (2012) for a discussion and for “warning”
comments, as well as to Section 3.1 here. However, the extent
of the problem has not been realized, which explains why
linear quasi-Newtonian studies of peculiar-velocity fields are
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still misleadingly termed relativistic. The reason is probably
because, so far, there has been no direct comparison between
the quasi-Newtonian and the proper relativistic study. It is one
of the aims of this work to make the comparison and in so
doing demonstrate the extent of the problem.'

In a proper relativistic linear analysis of cosmological peculiar
velocities there are no quasi-Newtonian restrictions, for the
simple reason that the resulting simplifications are not necessary.
The real difference comes from the role of the peculiar flux and
whether its gravitational input to FEinstein’s equations is
accounted for, or not. The flux also reflects the well-known fact
that, when peculiar motions are present, the cosmic fluid cannot
be treated as perfect, even at the linear level. The “imperfection”
appears as a nonzero peculiar flux due to the moving matter (e.g.,
see Section 2 here and Section 5.2.1 in G. F. R. Ellis et al. 2012).
Less well known is that the four-acceleration is also nonzero even
in the absence of pressure. Put another way, the peculiar flux is
always linked to a peculiar four-acceleration. In addition, the
peculiar-flux contribution to the relativistic gravitational field
feeds, through Finstein’s equations, into the conservations laws
and eventually appears in the formulae monitoring the evolution
of linear peculiar velocities. The result is the considerably
stronger linear growth rate of v o f for the peculiar-velocity
perturbations. Moreover, the theory of differential equations
guarantees that the aforementioned growth rate is the minimum
possible. The overall message is that general relativity leads to
substantially stronger growth rates for the linear peculiar-velocity
field and, in so doing, it can provide a theoretical answer to the
question raised by the fast and deep bulk flows reported by many
surveys. Moreover, this could be achieved within the framework
of the ACDM paradigm.

2. Peculiar Flux and Peculiar Four-acceleration

Cosmological peculiar motions require a universal reference
system, relative to which one can define and measure them.
Typically, this is the rest frame of the cosmic microwave
background (CMB), which is defined as the only coordinate
system where the radiation dipole vanishes (e.g., see
G. F. R. Ellis et al. 2012).

2.1. The Peculiar Flux

Relativistic studies of peculiar motions require “tilted”
spacetimes, with two groups of observers in relative motion.
Here, we consider a tilted, perturbed Friedmann—Robertson—
Walker (FRW) universe with two four-velocity fields u, and
ii,. The former is the reference (CMB) frame of the universe
and the latter is that of the moving matter. For nonrelativistic
peculiar motions, the two four-velocities are related by
i, = u, + v,, where v, represents the relative velocity of the
matter (with u,v® = 0 and v* < 1). Note that both frames
“live” in the perturbed universe (recall that the CMB is nearly
but not fully isotropic) and that none of the quasi-Newtonian
restrictions are imposed on either of them (E. Tsaprazi &
C. G. Tsagas 2020; M. Maglara & C. G. Tsagas 2022;
E. P. Miliou & C. G. Tsagas 2024).

' There are more examples of studies involving peculiar motions, which start

relativistically and reduce to Newtonian when the flux input of the moving
matter to the gravitational field is bypassed (see Section 4 below).

2 Inthe FRW background the u, and the i, fields coincide by default, which
makes the peculiar-velocity vector (v,) a gauge-invariant linear perturbation
J. M. Stewart & M. Walker 1974).
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Relative motions affect the type of matter experienced by
the relatively moving observers. In particular, when the
background spacetime is described by one of the Friedmann
models, the energy density (p), the (isotropic) pressure (p), the
energy flux (g,), and the viscosity (m,,) of the matter, as
measured in the two frames, are related by

qa =4, — (,0 + p)Va and b = Tubs
(1

to first approximation.® Accordingly, if the pressure (both
isotropic and viscous) is zero in one frame, it vanishes in any
other relatively moving coordinate system (at the linear level).
This is also the case for the density, but not for the energy flux.
Indeed, setting g, = 0O in the CMB frame leads to
g, = —(p + p)v, in that of the matter, while §, = 0 means that
q. = (p + p)v,. Clearly, setting both flux vectors to zero in
Equation (1) leaves no peculiar-velocity field to study. The only
exception is when the matter has a (de Sitter) inflationary
equation of state with p = —p (see M. Maglara &
C. G. Tsagas 2022 and also Section 3.3 below). Therefore,
following (lIc), the relative motion between the two frames
ensures that there is always a nonzero linear flux vector in the
system. Put another way, the cosmic medium can no longer be
treated as perfect. The “imperfection” appears in the form of a
nonzero peculiar-flux vector solely triggered by relative-motion
effects (e.g., see Section 5.2.1 in G. F. R. Ellis et al. 2012).

In Section 3, we will compare the relativistic study of linear
peculiar velocities to the quasi-Newtonian treatments of
R. Maartens (1998) and G. F. R. Ellis et al. (2001). We will
therefore adopt the conventions of these two papers to
facilitate the comparison. More specifically, we will assume
an Einstein—de Sitter background and set the flux and the four-
acceleration to zero in the matter frame (i.e., set g, = 0 and
A, = 0, respectively). So, there is no peculiar flux in the
coordinate system of the pressureless matter, which moves
along time-like geodesics. Then, in the absence of pressure, the
linear relation (1c) leads to

p=p, D=p,

4, = PVas 2

which is the flux triggered by the motion of the matter relative
to the rest frame of the CMB photons.

2.2. The Peculiar Four-acceleration

In relativity, as opposed to Newtonian gravity, energy fluxes
also contribute to the energy-momentum tensor. Therefore, in
a sense, one could say that peculiar motions ‘“gravitate”
(E. Tsaprazi & C. G. Tsagas 2020). Through Einstein’s
equations, the gravitational input of the peculiar flux feeds into
the relativistic conservation laws, which acquire flux-related
terms. More specifically, the linearized energy and momentum
conservation laws, respectively, read

p = _@p - Daqa and pAd = _qa - 4an’ (3)
where ©® = D%, > 0 is the expansion scalar, H is the

background Hubble parameter (with © = 3H there), and D, is
the 3D (covariant) derivative operator (e.g., see C. G. Tsagas

3 Hereafter, tilded variables will always be measured in the coordinate

system of the matter, while their nontilded counterparts will be evaluated in
the reference CMB frame.
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et al. 2008; G. F. R. Ellis et al. 2012). Hence, despite the
absence of pressure, the four-acceleration (A,) is not zero.*
This peculiar four-acceleration also reflects the fact that the
cosmic medium is no longer perfect when peculiar motions are
present.

3. Relativistic versus Quasi-Newtonian Studies

Despite its initially relativistic profile, the quasi-Newtonian
approach imposes strict constraints upon the host spacetime
that compromise its relativistic nature. Although the problem
has been known (e.g., see Section 6.8.2 in G. F. R. Ellis et al.
2012), so far there has been no direct comparison with the
fully relativistic studies to reveal the extent of it. Next, we will
provide such a comparison by looking at the linear evolution
of large-scale peculiar velocities.

3.1. Linear Quasi-Newtonian Approach

Quasi-Newtonian studies adopt a (reference) frame with
zero linear vorticity and shear. The restrictions do not stop
there, however, but lead to further compromising constraints.
These deprive the perturbed spacetime from key relativistic
features, like gravitational waves for example, eventually
leading to Newtonian-like equations and results (see Section
6.8.2 in G. F. R. Ellis et al. 2012 for “warning” comments).
When studying peculiar motions, the starting point is the linear
evolution law

Vo + Hy, = —A,, (4)

making the four-acceleration (A,) the driving force of the v,
field. The apparent “advantage” of the quasi-Newtonian
approach is that, without vorticity, one can appeal to a scalar
potential (¢) and write the four-acceleration as the gradient of
an effective potential by means of the expression (R. Maartens
1998; G. F. R. Ellis et al. 2001)

Ay = af > ®)

which is identical to its purely Newtonian counterpart for all
practical purposes. Note that ¢ is an ad hoc potential, the time
evolution of which follows from the ansatz ¢ = —©/3.
Moreover, the latter is not uniquely determined and requires
setting the shear to zero as well. The most serious side effect of
(5), however, is that it does not account for the gravitational
input of the peculiar flux, and this severely compromises the
study of peculiar velocities. It should therefore come as no
surprise that both the Newtonian and the quasi-Newtonian
treatments lead to the same differential equation for the linear
evolution of the v, field, namely to (R. Maartens 1998;
G. F. R. Ellis et al. 2001)

4 V,
9{2 a o

2
Vi, = —3HV, + H>, = — =, + (6)
t

4 Following Equation (3), zero four-acceleration is compatible with nonzero
flux only when ¢, = —4Hg,, namely in one out of theoretically infinite
possibilities (a set of measure zero probabilistically). Moreover, this one and
only case leads to a v, field that decays as v, o a”' « %3, which is
cosmologically unacceptable. Indeed, since peculiar velocities start weak
around recombination, there should be no bulk flows to observe today, if they
were to decay with time. Note that, even in the Newtonian studies, linear
peculiar velocities grow as v, o< £'/3.
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with the second equality reflecting the fact that a o /3 and
H = 2/3t after equipartition.” As expected, the above accepts
the power-law solution (R. Maartens 1998; G. F. R. Ellis et al.
2001)

v=Ct'/3 4 Cot™4/3 = C3a'/? + Csa?, @)

which simply reproduces the purely Newtonian growth
reported in P. J. E. Peebles (1980), T. Padmanabhan (1993),
and S. Dodelson (2003). In retrospect, the agreement between
the two approaches was unavoidable, since they have both
bypassed (albeit for different reasons) the contribution of the
peculiar flux to the gravitational field. As we will show in
Section 3.2 next, it is the gravitational input of the peculiar flux
that separates the relativistic studies from the rest.’

3.2. Linear Relativistic Approach

There is more than one way of showing that a relativistic
study that accounts for the effects of the peculiar flux leads to
faster linear growth rates for the peculiar-velocity field (e.g.,
see E. Tsaprazi & C. G. Tsagas 2020; M. Maglara &
C. G. Tsagas 2022; E. P. Miliou & C. G. Tsagas 2024). In what
follows, we will adopt an alternative and more direct approach
that provides a clearer insight in our opinion.

Starting from the conservation law of the momentum
density (3b) and keeping in mind that ¢, = pv, (see
Equation (2) in Section 2.1), it is straightforward to show that

Aa = —v, — Hy,, (8)

which agrees with its quasi-Newtonian counterpart (compare
to Equation (4) in Section 3.1 previously). However, the
agreement between the quasi-Newtonian and the relativistic
analysis of peculiar velocities stops at this point. The two
approaches begin to diverge, because the relativistic four-
acceleration is no longer given by the quasi-Newtonian ansatz
(5). Instead, taking the spatial gradient of the energy
conservation law (3a) and linearizing, one arrives at the
following expression for the four-acceleration (A,) in the
presence of peculiar motions (E. Tsaprazi & C. G. Tsagas
2020; M. Maglara & C. G. Tsagas 2022; E. P. Miliou &
C. G. Tsagas 2024)

A, =2, — 3aHA, — aD,¥ . ©)

The spatial gradients A, = (a/p)D,p and Z, = aD,0
describe inhomogeneities in the matter density and the
universal expansion, respectively (e.g., see C. G. Tsagas
et al. 2008; G. F. R. Ellis et al. 2012). Also, ¥ = D%, is the
3-divergence of the peculiar-velocity field, reflecting the input
of the latter’s flux to the continuity Equation (3a). The above
ensures that, in addition to the peculiar flux, the four-
acceleration also brings into play the density and the expansion

5 Equation (6) follows after employing the linear commutation law
D,y = D,p — HD, ¢ + (A,, imposing the ansatz ¢ = —©/3 and then
using the zero shear assumption to obtain the constraint D,O = 9H2v,,/2
(R. Maartens 1998; G. F. R. Ellis et al. 2001).

Both the zero shear and vorticity constraints of the quasi-Newtonian
treatment, as well as the subsequent introduction of the scalar potential (¢), are
not necessary. One can study linear peculiar velocities in full general relativity
without any of the previous restrictions/approximations. Thus, from the
relativistic viewpoint, the quasi-Newtonian study of peculiar-velocity fields is
an interesting mathematical exercise but without real physical insight.
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gradients. The evolution of Z, follows from the linearized
spatial gradient of the Raychaudhuri equation, namely from

Z,=-2HZ, — %pAa - %aHzAa + aD,D*A, .  (10)

Relations (9) and (10) are also the linear propagation equations
for the density gradients and the expansion gradients,
respectively, in the presence of peculiar motions.” Therefore,
the relativistic approach directly relates the four-acceleration
to the evolution of these two fields as well. This is the result of
accounting for the gravitational contribution of the peculiar
flux, namely for a purely general-relativistic input that is
unaccounted for in both the Newtonian and the quasi-
Newtonian approaches (though for different reasons).

Taking the time derivative of (9), substituting (10) into the
resulting expression and using Relation (8), we arrive at the

following linear propagation equation for the peculiar-velocity
field:

Vi, + Hv, — 3 H%), = L(Aa + 2HA, — 3 HzAa).
2 3aH 2
(1D
In deriving the above, we have also used the background
relation H = —3H?/2, together with the linear commutation

laws (D%,) = D%, — HD%, and (D,¥) = D,¥ — HD,9.
Expression (11) is a nonhomogeneous differential formula,
relating the linear evolution of peculiar-velocity perturbations
to those in the density distribution of the pressure-free matter,
in a tilted almost-FRW universe with zero spatial curvature.”
Note that the pressureless nature of the matter implies that (11)
applies to baryonic “dust” after recombination, as well as to
low-energy cold dark matter (CDM) species after equiparti-
tion. Expression (11) is the (fully relativistic) differential
equation governing linear peculiar velocities in a tilted
Einstein—de Sitter universe. Next, we will show that the
minimum growth rate of the peculiar-velocity field predicted
by the relativistic analysis is considerably stronger than the
Newtonian/quasi-Newtonian rate.

Our starting point is a familiar theorem of linear differential
equations, stating that the solution of a nonhomogeneous linear
differential equation forms from the general solution of its
homogeneous component and from a partial solution of the full
equation. Let us apply this theorem to Equation (11) and
isolate its homogeneous part, which reads

. 2 . 2
Vot —Vu— —= W=
3t 3t?
given that H = 2 /3t after matter-radiation equality. The above
solves analytically to give

0, (12)

1 3 2/3
v = —(2vy + 3vpty) L —(vo — Voto)(t—o) ,  (13)
5 to 5 t

7 Alternatively, one can obtain (9) and (10) by linearizing the nonlinear

formulae (2.3.1) and (2.3.2) of C. G. Tsagas et al. (2008), or Equations
(10.101) and (10.102) of G. F. R. Ellis et al. (2012), while taking into account
the linear relations (2) and (3b).

8 It should be noted that the terms nonhomogeneous /homogeneous refer
only to the nature of the differential equations and not to the homogeneity of
the space, which is both inhomogeneous and anisotropic at the linear
perturbative level.
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with v and vy determined by the initial conditions (at r = ty).
Therefore, solving the homogeneous part of (11) led to the
growth rate of v « ¢ for the linear peculiar-velocity field, which
is considerably stronger than the v /3 growth of the
Newtonian and quasi-Newtonian treatments (see Section 3.1
earlier). Moreover, it is important to realize that v o t is also
the minimum linear growth rate. Indeed, in line with the
aforementioned theorem on differential equations, the full
solution of the nonhomogeneous Equation (11) forms from the
general solution of its homogeneous part (i.e., from (13)
above) and from a partial solution of the original nonhomo-
geneous differential formula. Therefore, solving (11) in full
will make a physical difference only if the partial solution
grows faster than the fastest-growing mode of its homo-
geneous counterpart.” Put another way, mathematically speak-
ing, the theory of differential equations guarantees that v o ¢ is
the minimum growth rate for the linear peculiar-velocity field.

The physics goes along with the mathematics, and perhaps
the most straightforward and intuitive way to demonstrate this
is by involving the four-acceleration (4,), namely the driving
force of the peculiar-velocity field (see Equation (8) earlier).
This means that the stronger the four-acceleration, the faster
the peculiar velocity. Following Equation (9) and the
comments immediately after, in addition to the effects of the
peculiar flux, A, also brings into play those of the density and
the expansion gradients. Therefore, the overall impact of the
driving force depends on which and how many of these agents
are included in the final solution, thus allowing for studies that
can complement each other.

Without the nonhomogeneous right-hand side of differential
Equation (11), the v o< ¢ growth rate reported in this work (see
Solution (13) above) accounts only for the flux effects, and it is
driven by a constant four-acceleration (consult Equation (8) for
a quick check). On the other hand, the faster v /3 rate of the
earlier relativistic studies also accounts for some of the
gradient effects, and for this reason it is driven by a growing
four-acceleration (with A, /'3 at a minimum—see
E. Tsaprazi & C. G. Tsagas 2020 and also Equation (8) here).
It is conceivable that this rate could increase further, if all the
gradient effects were to be accounted for. In contrast, none of
the aforementioned agents contributes to the quasi-Newtonian
four-acceleration, which decays as A, 23 (see R. Maartens
1998, or consult Equation (8) here). This drastic change in the
evolution of the four-acceleration explains why the quasi-
Newtonian treatment leads to v o /> and thus to slower
peculiar velocities. Clearly, the latter applies to the purely
Newtonian treatment as well.

In summary, even in the “minimalist” scenario, where the
right-hand side of (11) is bypassed and only the flux effects are
accounted for, the relativistic analysis still leads to faster
peculiar velocities than the Newtonian/quasi-Newtonian
studies. This happens because the gravitational input of the
peculiar flux enhances the linear growth of the peculiar-
velocity field. As a result, relativity supports faster and deeper
residual bulk flows, beyond the typical expectations of the
ACDM model and perhaps like those reported in J. Colin et al.
(2011) and R. Watkins et al. (2023), for example.

o Although rather unlikely, it is conceivable that the partial solution of the

nonhomogeneous differential equation (11) could cancel out the growing
mode of the homogeneous solution (13). However, this will probably require a
unique fine-tuning of the initial conditions.
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Demonstrating this principle in a mathematically simple way is
the main aim of this work. We chose to do so by using the
long-known expressions (9) and (10), which are then easily
combined to give the differential equation (11).

In the recent literature there are also simulations of structure
formation that use relativistic numerical techniques (e.g.,
J. Adamek et al. 2016; J. Adamek et al. 2019; H. J. Macpherson
et al. 2019; C. Barrera-Hinojosa & B. Li 2020). Some works
also employ simulations to study the large-scale peculiar
kinematics. In G. Jelic-Cizmek et al. (2018) and C. Barrera-Hi-
nojosa et al. (2021), for example, the authors focused on the
generation of vorticity. To the best of our knowledge, the
simulations largely agree with the Newtonian picture. However,
before comparing our analytical approach to the simulations,
one should keep in mind that (i) the majority of the simulations
(including the last two) operate within the ACDM model, where
the accelerated expansion typically suppresses the growth of
essentially all kinds of distortions, including the peculiar
velocities (see Section 3.3 next); and (ii) even during the
preceding Einstein—de Sitter phase, the rotational component of
the peculiar-velocity field (investigated in simulations such as
those of G. Jelic-Cizmek et al. 2018 and C. Barrera-Hinojosa
et al. 2021) evolves considerably more slowly than the velocity
field itself, and the same also applies to the rest of the velocity
gradients (i.e., to the divergence and the shear—see E. Tsaprazi
& C. G. Tsagas 2020). It is very likely that the aforementioned
structural differences, both of which inhibit (or even suppress)
the impact of the simulated peculiar-velocity field, are the
reasons for the apparent disagreement between the analytical
and the numerical approaches. Put another way, as yet, there
seems to be no clear common ground where one could directly
compare the analytical work to the simulations and vice versa.
On the positive side, the relativistic simulations are under
development and there should still be room for further testing
and improvement. Especially in view of the increasing number
of surveys reporting bulk peculiar flows in excess of the
Newtonian/ACDM predictions. Then, the analytical results
presented here and their theoretical support to the aforemen-
tioned fast and deep bulk flows should provide the motivation
for adapting/extending the existing numerical codes to address
the ongoing bulk-flow puzzle, while offering a useful testing
ground for them at the same time.

3.3. Theory versus Observations

Within the framework of the ACDM paradigm, Solution
(13) holds between decoupling and the onset of the accelerated
phase, when applied to conventional baryonic dust. Alterna-
tively, when dealing with peculiar-velocity perturbations in the
distribution of the low-energy CDM species, Solution (13)
holds between equipartition and the accelerated phase. During
both of these periods, when the Universe is believed to be
close to the Einstein—de Sitter model, our results show faster
linear growth for the peculiar-velocity field. Given that the
growth rate of v o ¢ is also the minimum possible, it is fair to
argue that the relativistic analysis provides theoretical support
to several surveys claiming peculiar velocities faster than
anticipated (M. J. Hudson et al. 2004; R. Watkins et al.
2009, 2023; A. Kashlinsky et al. 2010; G. Lavaux et al. 2010;
J. Colin et al. 2011; A. Salehi et al. 2021; A. M. Whitford
et al. 2023). Overall, general relativity can provide a simple
and physically motivated answer to the bulk-flow puzzle.

Tsagas

At this point, we would like to draw the reader’s attention to
an additional issue of interest. Remaining within the ACDM
scenario, the Einstein—de Sitter period of the Universe is
followed by a recent phase of accelerated expansion. Once
cosmic acceleration starts, the growth of the v field is expected
to slow down (if not to decrease). For instance, when the
accelerated expansion is driven by a scalar field with an
effective p = —p equation of state, linear peculiar-velocity
perturbations were found to decay as v oc a~ ' (see M. Maglara
& C. G. Tsagas 2022 for a discussion). In general, the strength
of the effect depends on the rate of the acceleration, which in
turn depends on the driving agent. The latter could have the
form of a cosmological constant, or of some dynamically
evolving dark energy, in which case one also needs to know
the effective equation of state. In any case, the expansion starts
to accelerate late into the Einstein—de Sitter epoch. Prior to
that, the growing mode seen in Solution (13) will quickly
dictate the evolution of the peculiar-velocity field, unless the
initial conditions are fine-tuned against it. 10 Then, some (at
least) of the earlier enhancement will survive through the
accelerated phase to the present. On these grounds, one should
expect to measure bulk velocities faster than anticipated,
but also to see them decline at relatively low redshifts.
Qualitatively speaking, such a peculiar-velocity profile closely
resembles those reported in J. Colin et al. (2011) and in
R. Watkins et al. (2023; see Figures 1(a) and (b) here). Then,
the peculiar-velocity decline at low redshifts, as seen in
Figure 1, may simply reflect the Universe’s late-time
accelerated expansion. If so, the discrepancy between the
reported fast and deep bulk flows and the ACDM predictions
may not reflect a generic problem of the current cosmological
model, but it may instead indicate the use of the inappropriate
gravitational theory when studying large-scale peculiar
motions.

4. The Fundamental Role of the Peculiar Flux

Without accounting for the gravitational input of the
peculiar flux, the quasi-Newtonian e%uations simply repro-
duced the purely Newtonian (v oc ¢'/?) growth rate for the
linear peculiar-velocity field (see Solution (7) in Section 3.1).
This was the result of imposing strict constraints on the
perturbed spacetime, which compromised its relativistic
nature. In contrast, without imposing any constraints and by
accounting for the gravitational contribution of the peculiar
flux, the relativistic analysis led to the considerably stronger
growth (v « f) for linear peculiar velocities. This makes the
peculiar flux the key physical agent that separates the
Newtonian/quasi-Newtonian from the relativistic studies of
peculiar motions in cosmology.

In the literature, there are additional examples of studies
involving peculiar motions that start relativistically but end up
Newtonian, when the gravitational effect of the peculiar flux is
bypassed for one reason or another. The relativistic approach
to the Zel'dovich approximation of G. F. R. Ellis &
C. G. Tsagas (2002), in particular, reproduced the Newtonian
“pancake” attractor, once the quasi-Newtonian frame was
adopted and the four-acceleration was replaced by the gradient
of a potential, identical to that of R. Maartens (1998) and
G. F. R. Ellis et al. (2001). Another example is the relativistic

10 . - .
In an exactly analogous way, the growing mode of linear density
perturbations quickly dominates and dictates their evolution.
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Figure 1. (a) The redshift profile of the bulk flow from the likelihood analysis of J. Colin et al. (2011). The peculiar velocity (black dots) systematically exceeds the
blue line of the ACDM expectations, but its value also shows signs of decrease at lower redshifts. Note that Figure 1(a) shows the 1D expectation and needs to be
multiplied by v/3 to give the 3D one (see also Figure 8 in J. Colin et al. 2011). (b) The scale dependence of the bulk-flow velocity along the three coordinate axes and
of its mean value (green lines), estimated from the CosmicFlows-4 catalog (R. Watkins et al. 2023). The red dashed line is the theoretical expectation for the mean
bulk velocity according to the standard cosmological model. Note the profound disagreement between the predicted and the measured bulk-flow velocities, as well as
the decline in the magnitude of the latter at lower redshifts (see also Figure 7 in R. Watkins et al. 2023).

treatment of the Meszaros “stagnation” effect, where linear
perturbations in the density of the dust component “freeze”
during the radiation era (P. Meszaros 1974). This time, no
quasi-Newtonian frame was introduced, the gravitational input
of the peculiar flux was accounted for, and all the flux-related
terms (as seen in Equations (3), (9), and (10) here) were
initially included in the linear equations. In the process,
however, the analysis was switched to the Landau-Lifshitz (or
energy) frame, where the flux vanishes by default (see Sections
3.3.3 and 3.3.4in C. G. Tsagas et al. 2008, or Section 10.4.3 in
G. F. R. Ellis et al. 2012). Without the flux input, the
“relativistic” result was identical to the Newtonian solution of
P. Meszaros (1974). It would be interesting to see what
happens when the peculiar flux is properly accounted for in
both of the aforementioned cases.

Our analysis, as well as the aforementioned characteristic
examples, clearly demonstrates that studies that may have
started as relativistic reduce to Newtonian for all practical
purposes when the gravitational input of the peculiar flux is
(for one reason or another) unaccounted for.

5. Discussion

In general relativity, moving matter has an additional input
to the gravitational field, since its flux also contributes to the
energy-momentum tensor. It is then only natural to argue that
any study of peculiar motions, which claims to be relativistic,
must account for the above effect. Otherwise, the study is in
danger of severely compromising its relativistic nature and
even reducing to Newtonian. All this is simple common sense,
and it should go without saying.

An example of matter in motion, on cosmological scales, is
the observed bulk peculiar flows. These are believed to have
started as weak velocity perturbations at recombination, which
were subsequently amplified by structure formation. There are
problems, however, because several recent surveys have
reported bulk velocities well in excess of those expected.
Having said that, the available theoretical studies are still few
and sparse, and they are almost all Newtonian. There are also

few quasi-Newtonian works that have the external appearance
of a proper relativistic analysis. Nevertheless, by its own
nature, the quasi-Newtonian framework is so restrictive that it
eventually leads to Newtonian-like equations and results (e.g.,
see Section 1.4.2 here and also Section 6.8.2 in G. F. R. Ellis
et al. 2012). As a result, both studies arrive at the same
mediocre (v o< 1'/3) growth rate for the linear peculiar-velocity
field (e.g., see P. J. E. Peebles 1980; R. Maartens 1998 and
Section 3.1 here), which is too weak to explain the reported
fast bulk flows without introducing new parameters.

However, the agreement between the Newtonian and the
quasi-Newtonian results is misleading because it simply
manifests the fact that the latter analysis is also Newtonian
(for all practical purposes). This happens because both
approaches bypass (for different reasons) the gravitational
input of the peculiar flux. In Newtonian physics this is
unavoidable, since only the density of the matter gravitates. In
the quasi-Newtonian studies, however, the effect of the
peculiar flux is not accounted for because of the entirely
unnecessary zero linear vorticity and shear constraints and the
subsequent introduction of an (also unnecessary) scalar
potential for the linear four-acceleration. All this blurs the
physics and diverts the attention from the key role of the
peculiar flux, so that its contribution to the relativistic
gravitational field and subsequently to the linear evolution of
peculiar velocities is inadvertently bypassed. As a result, the
linear evolution is identical to that of the purely Newtonian
study.

Accounting for the gravitational contribution of the peculiar
flux changes the picture drastically. The flux input to the
energy-momentum tensor feeds into the relativistic conserva-
tion laws and then emerges in the linear evolution formula of
the peculiar-velocity field, which differs profoundly from its
Newtonian/quasi-Newtonian counterpart. The solution reveals
a considerably stronger growth (v o f) for linear peculiar
velocities between recombination and the dark-energy epoch.
Moreover, a well-known mathematical theorem guarantees
that the above is the minimum growth rate of the peculiar-
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velocity field. No restrictions have been imposed and no
ad hoc assumptions have been made. It is pure general
relativity, and it could provide a simple, as well as physically
motivated, answer to the bulk-flow puzzle. Moreover, it is also
conceivable that this could be achieved without affecting the
basics of the ACDM model, but by simply relaxing its current
(Newtonian-based) limits on large-scale peculiar motions.
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