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Abstract We consider dipolar anisotropies in the universal expansion triggered by 
bulk peculiar flows. Starting with the deceleration parameter, we employ the familiar 
expansion tensor and introduce a new direction-dependent parameter, namely the 
deceleration tensor. Using linear cosmological perturbation theory we identify an 
apparent (Doppler-like) dipolar anisotropy in the sky distribution of the deceleration 
parameter, which is due to the observer’s peculiar motion and it is closely analogous to 
the dipole seen in the Cosmic Microwave Background. In practice, this means that the 
bulk-flow observers should “see” their universe accelerating faster towards a certain 
point on the celestial sphere and equally slower towards the antipodal. Typically, the 
dipole axis should lie fairly close to that of the microwave background, though the 
two dipoles should not necessarily coincide. Also, given that peculiar velocities fade 
away on progressively larger scales, the magnitude of the dipolar anisotropy in the 
deceleration parameter should decrease with increasing redshift. Finally, we show 
that peculiar motions leave an apparent dipolar imprint in the sky distribution of the 
Hubble parameter as well. 

1 Introduction 

Relative motions have been known to introduce apparent, Doppler-like, dipolar 
anisotropies, triggered solely by the observer’s motion towards, or away, from the 
source. In cosmology, the best known example is the dipole seen in the spectrum 
of the Cosmic Microwave Background (CMB). The latter is not believed to reflect 
a real generic anisotropy of the universe, but it has been treated as an artefact of 
our peculiar motion relative to the “smooth” universal expansion (Sciama 1967). In 
fact, according to the cosmological principle, every typical observer in the universe 

C. G. Tsagas (B) 
Section of Astrophysics, Astronomy and Mechanics, Department of Physics, Aristotle University 
of Thessaloniki, Thessaloniki, Greece 

Clare Hall, University of Cambridge, Cambridge, UK 
e-mail: tsagas@astro.auth.gr 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
C. Tsagas and L. Perivolaropoulos (eds.), A Multipolar Universe?, Astrophysics and Space 
Science Proceedings 1, https://doi.org/10.1007/978-3-031-85527-6_10 

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-85527-6_10&domain=pdf
mailto:tsagas@astro.auth.gr
https://doi.org/10.1007/978-3-031-85527-6_10
https://doi.org/10.1007/978-3-031-85527-6_10
https://doi.org/10.1007/978-3-031-85527-6_10
https://doi.org/10.1007/978-3-031-85527-6_10
https://doi.org/10.1007/978-3-031-85527-6_10
https://doi.org/10.1007/978-3-031-85527-6_10
https://doi.org/10.1007/978-3-031-85527-6_10
https://doi.org/10.1007/978-3-031-85527-6_10
https://doi.org/10.1007/978-3-031-85527-6_10
https://doi.org/10.1007/978-3-031-85527-6_10
https://doi.org/10.1007/978-3-031-85527-6_10


136 C. G. Tsagas

should see an analogous dipole, though not necessarily of the exact same magnitude 
and direction. 1 On these grounds. we may use the idealised CMB frame as the ref-
erence coordinate system of the universe, relative to which it makes sense to define 
and measure peculiar velocities. 

Large-scale peculiar motions, also known as bulk flows (see Ade et al. (2014) and 
references therein), are believed to be the result of the ongoing structure-formation 
process. For this reason, peculiar velocities have been treated as a relatively recent 
(post recombination) addition to the kinematics of our universe. Theoretical studies, 
both Newtonian and relativistic, show that peculiar-velocity perturbations grow in 
time (Peebles 1980; Tsaprazi and Tsagas 2020). This means that the magnitude of 
any bulk velocity field should increase at later times (low redshifts–small scales) 
and fade away at higher redshifts. As a result, the relative-motion effects should 
become less pronounced as one moves away from the observer to progressively 
larger cosmological lengths. 

Dipolar anisotropies in the sky-distribution of the deceleration parameter were 
first reported (to the best of our knowledge) about fifteen years ago by Cooke and 
Lynden-Bell (2010). Other reports followed (e.g. see Antoniou and Perivolaropoulos 
(2010); Wang and Wang (2014); Bengaly et al. (2015) and references therein), but it 
was not until recently that the.q-dipole was attributed to our peculiar motion relative 
to the CMB frame by Colin et al. (2019). An analogous dipole, this time in the 
distribution of .�� was aslo recently reported in Clocchiatti et al. (2024). Although 
the issue is still open, if the aforementioned dipoles are confirmed, it could have 
pivotal implications for our understanding of the recent expansion history of the 
universe (perhaps even more–e.g. see Tsagas (2010, 2011); Secrest et al. (2021); 
Siewert et al. (2021); Krishnan et al. (2022); Singal (2022) for a fairly representative 
list of possibilities). In addition, there have also been recent claims of a dipolar 
anisotropy in the sky-distribution of the Hubble parameter, along an axis that is 
largely consistent with that of the aforementioned .q-dipole (Migkas et al. 2020, 
2021). Given the close relation between the Hubble and the deceleration parameters 
(the latter is essentially the time-derivative of the former), a dipolar anisotropy in 
one of them should (almost) necessarily ensure the same for the other. 

The standard deceleration parameter (. q) is a single scalar that monitors the average 
(isotropic) deceleration/acceleration rate of the universal expansion, which makes 
it unsuited for identifying anisotropies in the universal kinematics. One can cir-
cumvent the problem, by introducing three (scalar) deceleration parameters, one 
along each of the principal axis. Proceeding in this way and assuming a (perturbed) 
tilted Friedmann-Robertson-Walker (FRW) cosmology. it was demonstrated that bulk 
peculiar flows induce an apparent dipolar anisotropy in the deceleration parameter

1 No real observer in the universe follows the CMB frame, but we all move relative to it. Our 
Milky Way and the Local Group of galaxies, for example, “drift” with peculiar velocity close to 
600 km/sec (Kogut et al. 1993; Aghanim et al. 2020). 
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Fig. 1 Observers (.O1, .O2) with peculiar velocity .ṽa relative to the reference .ua-field. The 4-
velocities .ua and .ũa are related by the Lorentz boost .ũa = γ̃(ua + ṽa), where .γ̃ = (1 − ṽ2)−1/2. 
The hyperbolic “tilt” angle. β is defined so that.cosh β = −uaũa = γ̃, with.γ̃ � 1 for non-relativistic 
peculiar motions (i.e. for.ṽ2 � 1). Throughout this study the.ua-field is aligned with the idealised 
CMB frame, while.ũa is the 4-velocity of a real observers inside the bulk-flow. D

along the observer’s motion (Tsagas 2010, 2011). Here, we provide a more gen-
eral way of incorporating directional dependencies, by introducing and using the 
deceleration tensor (.Qab–see Sect. 3.1 below). The latter is a .3 × 3 spatial matrix, 
the trace of which reduces to the familiar scalar deceleration parameter, while its 
off-diagonal components monitor anisotropies in the rate of the universal decelera-
tion/acceleration. These anisotropies can be genuine, namely features of the host 
spacetime, or apparent triggered by the observer’s peculiar motion. In order to 
disentangle the two, it helps to employ a tilted cosmological model. 2

Tilted cosmologies are best suited to the study of bulk peculiar flows, as they 
allow for two (at least) families of relatively moving observers. Typically, the first 
family is aligned with the idealised coordinate system of the CMB, while the second 
family are the real (the tilted) observers residing in galaxies like our Milky Way (see 
Fig. 1 in Sect. 2.1). Writing the deceleration tensor in the (reference) CMB frame 
and in the tilted coordinate system of the real observers and then comparing the two 
expressions, one can readily isolate the relative-motion effects in the components of 
the deceleration tensor. Among others, the comparison reveals an apparent Doppler 
like anisotropy in the deceleration parameter solely triggered by the observers’ pecu-
liar motion with respect to the CMB (see Sect. 3.3 here). More specifically, observers 
moving towards a certain point on the celestial sphere will assign a larger/smaller 
value to the deceleration parameter measured locally in the direction of their motion. 
Observers that move away from the same point in the sky, on the other hand, will 
assign an equally smaller/larger value to their local deceleration parameter. In other 
words, even when the tilted observers are surrounded by an isotropic distribution of 
sources (say of supernovae Ia), they will assign a more/less negative value to the

2 Given the linear nature of the pursued analysis, our study applies to lengths larger than the 
anticipated homogeneity scale of the universe. The latter is typically set around the 100 Mpc 
threshold. 
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deceleration parameter measured along the direction of their peculiar motion and an 
equally less/more negative value along the antipodal. 3

The close relation between the deceleration and the Hubble parameters ensures 
that that peculiar motions induce an exactly analogous apparent dipole in the sky-
distribution of the Hubble parameter as well (see Sect. 3.4 here). We demonstrate 
this by working in a tilted almost-FRW cosmology and by means of the familiar 
expansion tensor. In addition to the analogies, however, there are differences as well, 
suggesting that neither the magnitudes nor the axes of these two kinematic dipoles 
should necessarily coincide. 

2 Relative Motions in Cosmology 

Observers living in typical galaxies move relative to the idealised reference frame of 
the universe. The latter has been typically identified with the coordinate system of the 
CMB, where the associated dipole vanishes by default. This makes the CMB frame 
the coordinate system, relative to which one should define and measure large-scale 
peculiar velocities. 

2.1 The 4-Velocity Tilt 

Consider two families of observers in an perturbed Friedmann universe. Let us also 
identify the former family with the “fictitious” observers that follow the CMB frame 
and the latter group with the “real” observers moving relative to it. When the peculiar 
motion is non-relativistic, the 4-velocities of the idealised and the real observers (. ua
and .ũa respectively) are related by 

.ũa = ua + ṽa , (1) 

where .ṽa represents the aforementioned peculiar velocity. Note that . ũa ũa = −1 =
uaua, .ua ṽa = 0 by construction and.ṽ2 = ṽa ṽ

a � 1 at the non-relativistic limit (see 
also Fig. 1).

3 Additional anisotropies in the sky-distribution of the deceleration parameter may also appear, 
because the supernovae involved in the measurements are not isotropically distributed in space and 
they may also have individual peculiar motions, because the bulk flow is not spherically symmetric 
and the observer may not reside at its centre, because the peculiar motion may be generically 
anisotropic, etc (see also Sect. 3.3 later). Analysing all these different types of anisotropy, however, 
goes beyond the scope of this study. Here, instead, we are focusing on the trademark signature 
of peculiar flows, that is on an apparent (Doppler-like) dipolar anisotropy in the spectrum of the 
deceleration parameter, solely triggered by the observers’ motion relative to the distant sources. 
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Introducing two 4-velocity fields into the spacetime implies defining two tempo-
ral directions, along .ua and .ũa respectively, as well as an equal number of 3-spaces 
orthogonal to these 4-velocity vectors. Then, the metric (.gab) of the host space-
time decomposes as .gab = hab + uaub = h̃ab + ũa ũb, with .hab and .h̃ab projecting 
orthogonal to their corresponding 4-velocities (i.e. .habub = 0 = h̃abũb). Moreover, 
the operators .· = ua∇a and .′ = ũa∇a define time derivatives along the .ua and the 
.ũa fields respectively, while the associated spatial gradients are .Da = hab∇b and 
.D̃a = h̃ab∇b. Overall, by introducing the .ua and the .ũa fields, we have achieved a 
“double” 1+3 splitting of the spacetime into time and 3-D space (Tsagas et al. 2008; 
Ellis et al. 2012). 

One is free to choose any of these two groups of observers to monitor the implica-
tions of large-scale peculiar motions for the kinematics of the universal expansion. 
Here, we will adopt the viewpoint of the real (the “tilted”) observes, namely those 
living in typical galaxies like ours, instead of following their fictitious CMB coun-
terparts. 4 Technically speaking, this means that the whole of our analysis will take 
place in the “tilted” frame of the bulk peculiar motion. 5

2.2 Tilted Kinematics 

The kinematic details of the three velocity fields involved in Eq. (1) follow after 
splitting their gradients into their irreducible components. More specifically, we 
have 

. ∇bua = 1

3
�hab + σab + ωab − Aaub and ∇bũa = 1

3
�̃h̃ab + σ̃ab + ω̃ab − Ãa ũb ,

(2) 
for the two 4-velocities and 

.D̃bṽa = 1

3
ϑ̃h̃ab + ς̃ab + �̃ab , (3) 

for the peculiar velocity (Tsagas et al. 2008; Ellis et al. 2012). In the above,. � = Daua
is the volume scalar monitoring the expansion/conraction of the associated family 
of observers (when positive/negative). In addition, .σab = D〈bua〉 and .ωab = D[bua]

4 Hereafter, we will use the term “tilted” when referring to the real observers, because of the 
hyperbolic “tilt” angle (. β) formed between their 4-velocity (.ũa) and that of the reference .ua-field 
(see Fig. 1). 
5 One may also take the view point of the idealised observers and pursue the analysis in the coordinate 
system of the CMB, assuming that the latter moves with “peculiar” velocity .va = −ṽa relative to 
the tilted frame. It goes without saying (and it is also straightforward to show) that the results are 
physically identical. 
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are the shear and the vorticity tensors respectively. 6 The former describes shape 
distortions in the associated worldline congruence and the latter its rotation. Finally, 
.Aa = ub∇bua is the 4-acceleration vector, implying non-geodesic motion. Clearly, 
exactly analogous definitions hold for the “tilded” variables on the right-hand side of 
(2b). Similarly, expression (3) provides the irreducible decomposition of the peculiar-
velocity field, as seen by the real observers. Hence, .ϑ̃ = D̃a ṽa , .ς̃ab = D̃〈bṽa〉 and 
.�̃ab = D̃[bṽa] are respectively the volume scalar, the shear and the vorticity tensors 
of the bulk peculiar flow. 

The kinematic variables defined in Eqs. (2) and (3) are related with each other and 
the relations depend on the magnitude of the peculiar velocity and on the symme-
tries of the host spacetime (see Maartens (1998) for the full nonlinear expressions). 
Assuming non-relativistic peculiar motions in a perturbed (almost-FRW) universe, 
leads to the linear relations 

.�̃ = � + ϑ̃ , σ̃ab = σab + ς̃ab , ω̃ab = ωab + �̃ab (4) 

and 
. Ãa = Aa + ṽ′

a + H ṽa , (5) 

with .H = �/3 representing the background Hubble parameter. Consequently, the 
kinematics of the two frames differ and the differences are entirely due to relative-
motion effects. On these grounds, the aforementioned effects should be local, though 
the affected scales can be large enough (e.g. of the order of few hundred Mpc) to 
acquire cosmological relevance. 

3 Peculiar Motions and the Deceleration Parameter 

Relative motions are typically associated with apparent (Doppler-like) dipolar 
anisotropies triggered by the observer’s peculiar flow. The CMB dipole, for example, 
has been attributed to the peculiar motion of our Local Group. In order to identify 
similar signatures in the deceleration/acceleration rate of the universe, it helps to 
introduce an associated deceleration tensor.

6 Angled brackets denote the symmetric, traceless component of second-rank tensors, while square 
ones indicate their antisymmetric part. Put another way,. σab = (Dbua + Daub)/2 − (Dcuc/3)hab
and.ωab = (Dbua − Daub)/2. 
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3.1 The Deceleration Tensor 

The standard deceleration parameter (. q) is a scalar variable that monitors the mean 
deceleration/acceleration of the universal expansion. The latter is not fully isotropic, 
however, primarily due to effects triggered by structure formation. Here, we will 
describe anisotropies in the global deceleration/acceleration of the universe by 
introducing the deceleration tensor 

.Qab = −
(
hab + 9

�2
ha

chb
d�̇cd

)
, (6) 

where 

.�ab = 1

3
�hab + σab + ωab , (7) 

is the more familiar expansion tensor (e.g. see Tsagas et al. (2008)). 7 By construction, 
both.�ab and.Qab are spacelike tensors (i.e. .�abua = 0 = �abub and. Qabua = 0 =
Qabub), with a symmetric as well as an antisymmetric part. 8 In addition, as expected, 
the traces (6) and (7) give  

.Q = 3q and � = 3H , (8) 

where .q = −[1 + (3�̇/�2)] and .H = �/3 are the familiar deceleration and Hub-
ble parameters respectively (Tsagas et al. 2008). In other words, the deceleration 
tensor is a 3. ×3 matrix with its diagonal components measuring the mean decelera-
tion/acceleration of the expansion. The non-diagonal components of.Qab , on the other 
hand, describe anisotropies due to shear-like distortions and rotational perturbations. 
Exactly analogous is the role of the expansion tensor. 

Suppose that.na is the unit vector along a given spatial direction, so that. nana = 1
and.uana = 0. Then, the deceleration/acceleration of the expansion measured along 
.na is given by the (twice contracted) scalar .Qabnanb. On using definition (6), the 
latter reads 

.Qabn
anb = q − 9

�2
σ̇abn

anb , (9) 

since .ω̇abnanb = 0 and .ḣabnanb = (Aaub + ua Ab)nanb = 0. Therefore, the decel-
eration parameter measured in a given spatial direction consists of its mean value 
plus/minus corrections due to shear-like anisotropies. These are triggered by tem-
poral variations in the effective shear distribution along the direction in question.

7 Typically, the expansion tensor does not include rotational effects. Nevertheless, we have incorpo-
rated the vorticity tensor into definition (7) for completeness, although rotation will play no direct 
role in our analysis. 
8 Isolating the symmetric traceless component and the antisymmetric part of (6), gives . Q〈ab〉 =
−9hachbd σ̇cd/�2 and .Q[ab] = −9hachbd ω̇cd/�2 respectively. Also, it goes without saying that 
.�〈ab〉 = σab and.�[ab] = ωab. 
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Finally, applied to an FRW universe, where.� = 3H and.σab = 0 = ωab by default, 
expressions (6) and (9) reduce to 

.Qab = qhab and Qabn
anb = q , (10) 

as expected given the spatial isotropy of the Friedmann models. 

3.2 The Deceleration Tensor in Tilted Universes 

Let us consider a tilted almost-FRW universe and allow for a group of real observers 
living in a typical galaxy like our Milky Way and moving relative to the CMB frame 
with 4-velocity .ũa and bulk peculiar velocity .ṽa (see Fig. 1 in Sect. 2.1 earlier). 
Written in the tilted frame, the deceleration tensor defined in (6) reads 

.Q̃ab = −
(
h̃ab + 9

�̃2
h̃a

ch̃b
d�̃′

cd

)
, (11) 

with .�̃ab = (�̃/3)h̃ab + σ̃ab + ω̃ab and the primes denoting time differentiation 
along the .ũa-field. 9

Starting form (11), substituting relations (4), employing definitions (6) and (7), 
while keeping up to first-order terms, we obtain 

.Q̃ab − Qab = 2qu(a ṽb) − 1

H 2

(
1

3
ϑ̃′hab + ς ′

ab + �̃′
ab

)
, (12) 

given that .�̃ = � = 3H in the FRW background and .h̃ab = hab + 2u(a ṽb) at the 
linear level. The above applies to a perturbed Friedmann universe and relates the 
deceleration tensor (.Q̃ab) measured in the tilted frame of the real observers to the 
one in the CMB frame of their fictitious counterparts (.Qab). As expected, in the 
absence of peculiar motions, the two tensors coincide. 

Taking the trace of (12), using (8), recalling that .ϑ̃/H � 1 during the linear 
regime, as well as keeping in mind that.haa = 3 and.ua ṽa = 0 = ς̃ ′

a
a = �̃′

a
a always, 

provides the following linear relation between the deceleration parameters in the 
aforementioned two coordinate systems 

.q̃ − q = ϑ̃′

3Ḣ

(
1 + 1

2
�

)
= − ϑ̃′

3H 2
, (13)

9 Alternatively, one can take the viewpoint of the idealised CMB observer, by accounting for their 
“peculiar flow” relative to the tilted frame with velocity.va (where.va = −ṽa at the non-relativistic 
limit). It goes without saying that the change of frames leaves the results and the conclusions 
unaffected and physically identical. 
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with.� = ρ/3H 2 representing the density parameter of the FRW background. Hence, 
. q and . q̃ differ and their difference depends on the dimensionless ratio .ϑ̃′/Ḣ (or 
equivalently on .ϑ̃′/H 2). The above is in complete agreement with Tsagas (2011) 
and Tsaprazi and Tsagas (2020), where the interested reader is referred to for a 
discussion on the relative-motion effects on the (scalar) deceleration parameter. Here 
we note that, whereas .ϑ̃/H � 1 at the linear perturbative level, the ratios .ϑ̃′/Ḣ and 
.ϑ̃′/H 2 are not necessarily small and their impact increases with decreasing scale. 
This allows for an apparent change in the sign of the deceleration parameter (from 
positive to negative) measured locally by observers inside slightly contracting bulk 
flows (Tsagas 2010, 2011, 2021, 2022; Tsagas and Kadiltzoglou 2015). 

3.3 Doppler-Like Dipole in the Deceleration Parameter 

Projecting expression (12) along a given spatial direction (determined by the unit 
vector. na , with.uana = 0), using definitions (6) and (11) for.Qab and.Q̃ab respectively, 
while keeping in mind that .(ϑ̃/3)h̃ab + ς̃ab = D̃(bṽa), leads to 

.Q̃abn
anb − Qabn

anb = − 1

H 2

(
D̃bṽa

)′
nanb , (14) 

to first approximation. Moreover, by means of the linear commutation law. 

(
D̃bṽa

)′ =
D̃bṽ

′
a − H D̃bṽa , we arrive at 

. Q̃abn
anb − Qabn

anb = 1

H
naD̃a

(
ṽbn

b
) − 1

H 2
naD̃a

(
ṽ′
bn

b
)

= 1

H
naD̃a (ṽ cosφ) − 1

H 2
naD̃a

(
ṽ′ cosψ

)
, (15) 

In the above. ṽ and. ṽ′ are the magnitudes of the two vectors, while. φ and. ψ represent 
the trigonometric angles between . ṽa , .ṽ′

a and .na respectively (with .0 ≤ φ, ψ ≤ π). 
The right-hand side of (15) ensures that there are differences between the direc-
tional measurements of the deceleration parameter made in the two frames (i.e. that 
.Q̃abnanb 	= Qabnanb), triggered solely by the peculiar flow of the tilted (the real) 
observer. More specifically, unless the two terms on the right-hand side of the above 
“conspire” to cancel each other out, they induce an apparent (Doppler-like) dipolar 
anisotropy in the sky distribution of the deceleration parameter along the observer’s 
peculiar flow. 

In order to demonstrate this claim, let us take the standard approach that the uni-
verse appears isotropic to observers following the idealised CMB frame. Practically,
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Fig. 2 Consider an isotropic sky-distribution of identical distant (comoving) sources (e.g. of super-
novae I a–circular dashed line) around the observer (. O), living in a typical galaxy inside a bulk 
flow (. D) and moving with peculiar velocity . ṽ relative to the sources. Assuming that the observer 
“approaches” point. P on the celestial sphere and simultaneously “moves away” from the antipodal 
point.P ′, they will “see” an apparent (Doppler-like) dipole in the sky-distribution of the deceleration 
parameter forming along the direction of their peculiar motion (dotted line). Note that we ignore 
any side effects due to the potential anisotropy of the bulk flow itself 

this means setting .Qabnanb = q in Eq. (15)–see also relation (10a) in Sect. 3.1 ear-
lier. Then, assuming (for simplicity) that the first term on the right-hand side of (15) 
dominates, the latter expression reduces to 

.Q̃abn
anb = q + 1

H
naD̃a (ṽ cosφ) , (16) 

Therefore, keeping the direction vector (. na) fixed, we arrive at 

.Q̃abn
anb = q + 1

H
naD̃a ṽ , and Q̃abn

anb = q − 1

H
naD̃a ṽ (17) 

when .ṽa ↑↑ na and .ṽa ↑↓ na respectively (alternatively for .φ = 0 and .φ = π). 
Consequently, depending on whether the directional gradient .naD̃a ṽ is posi-
tive/negative, observers moving towards a certain point on the sky will assign an 
increased/decreased value to the deceleration parameter in that direction, compared 
to the value measured in the CMB frame. In contrast, observers moving away from the 
aforementioned point will assign an equally decreased/increased value to .Q̃abnanb. 
Accordingly, observers “approaching” a certain point on the celestial sphere will mea-
sure an increased/decreased value for their deceleration parameter in the direction 
of that point and an equally decreased/increased value towards the antipodal point
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they are moving away from. 10 Therefore, the bulk-flow observers should “measure” 
faster acceleration along one celestial direction and equally slower in the opposite. 
Then, the sky distribution of the deceleration parameter should exhibit an apparent 
(Doppler-like) dipole entirely due to their peculiar motion (e.g. see Fig. 2). This 
distinct type of anisotropy is the “trademark signature” of relative motion and fairly 
straightforward to disentangle from anisotropies of different origin, like those due to 
structure formation for example. Analysing the Pantheon+ data set and those of the 
upcoming LSST-DA survey, for example, should provide the opportunity to do so. 

According to Eq. (17), the magnitude of the induced dipole is determined by the 
value of the projected gradient .naD̃a ṽ. Unfortunately, the current bulk-flow surveys 
provide estimates of the mean bulk velocity only and not of its spatial gradients. This 
makes it impossible to estimate quantitatively the magnitude of the aforementioned 
dipole. Nevertheless, the gradients seen on the right-hand sides of (17a) and (17b) 
ensure that the induced dipole should appear stronger on smaller scales (i.e. closer 
to the observer) and weaker on progressively larger lengths (i.e. away from the 
observer). This is also corroborated by the fact that the peculiar velocities themselves 
also fade away with scale/redisift. 

In general, the induced anisotropy depends on the angle (. ψ) between .ṽ′
a and . na

as well (see Eq. (15) above), in which case expression (16) generalises to 

.Q̃abn
anb = q + 1

H
naD̃a (ṽ cosφ) − 1

H 2
naD̃a

(
ṽ′ cosψ

)
. (18) 

The last term on the right-hand side of the above also triggers an apparent (Doppler-
like) dipolar anisotropy in the sky distribution of the deceleration parameter, though 
this time the axis is not necessarily collinear with the peculiar velocity vector (. ṽa). 
Clearly, the overall .q-dipole is the linear combination of the aforementioned two. In 
practice, this means that the dipole axis in the .q-distribution should not necessarily 
coincide with that of the CMB dipole, assuming that the latter is purely kinematical 
and therefore collinear to . ṽa . 

In all of the above, the observer has been residing near the centre of an almost 
spherical bulk flow, which is moving coherently relative to a largely isotropic dis-
tribution of distant sources. Violating any of these assumptions, should inevitably 
lead to additional types of anisotropy on top of the dipolar. For instance, observers 
residing in the periphery of the dark flow will see a hemisphere anisotropy in the 
sky-distribution of the deceleration parameter. Anisotropies in the bulk-flow kine-
matics are likely to cause quadruple anisotropies in the observed .q-distribution, the

10 Consider an isotropic distribution of distant sources, say of supernovae type.Ia, around the bulk-
flow observers, whose peculiar motion “brings them closer” to a certain source on the celestial 
sphere, while it “pushes them away” from its identical counterpart at the antipodal. Then, despite 
the isotropy of the sources, the moving observers will “see” an apparent (Doppler-like) dipole 
forming in the sky distribution of the deceleration parameter along the direction of their peculiar 
motion (qualitatively analogous to that seen in the CMB spectrum–see Fig. 2). 
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individual peculiar motions of the sources could further complicate the overall pic-
ture, and so on. Nevertheless, of all the different types of anisotropy, the dipolar one 
is the “trademark” signature of relative motion and the reason we have focused on it. 

3.4 Doppler-Like Dipole in the Hubble Parameter 

Given the close relation between the deceleration and the Hubble parameters, one 
expects to see peculiar motions inducing an analogous apparent (Doppler-like) dipole 
in the sky-distribution of the latter. In general, anisotropic expansion is monitored by 
the expansion tensor, defined in Eq. (7) of Sect. 3.1. Employing .�ab, together with 
its tilted counterpart (.�̃ab–see expression (11) in Sect. 3.2) and the linear relations 
(4), gives 

.�̃abn
anb − �abn

anb = nbD̃b
(
ṽan

a
) = naD̃a (ṽ cosφ) , (19) 

with .0 ≤ φ ≤ π. The above ensures that the rate of the Hubble expansion measured 
along a spatial direction .na by the tilted observer, differs from the one measured 
by their CMB counterparts, entirely due their relative motion. More specifically, 
the peculiar flow of the tilted frame triggers a Doppler-like anisotropy in the sky 
distribution of the Hubble parameter, which depends on the direction of the observer’s 
motion and it is exactly analogous to that seen in the deceleration parameter (see 
previous section). Indeed, following (19), we have 

. �̃abn
anb − �abn

anb = naD̃a ṽ and �̃abn
anb − �abn

anb = −naD̃a ṽ

(20) 
when .ṽa ↑↑ na and .ṽa ↑↓ na respectively (alternatively for .φ = 0 and for .φ = π). 
Given that in the idealised CMB frame the universal expansion appears isotropic, we 
may set .�abnanb = H , in which case the above relations combine to 

.�̃abn
anb = H ± naD̃a ṽ . (21) 

Accordingly, depending on the sign of peculiar-velocity gradient, the bulk-flow 
observers will assign an increased/decreased value to the Hubble parameter mea-
sured along their motion and an equally decreased/increased value in the opposite 
direction they are moving away from. Clearly the resulting dipolar anisotropy is not 
real, but an apparent effect triggered solely by the observers’ peculiar motion relative 
to the CMB frame (see also Fig. 2 in Sect. 3.3 previously). 11

11 As in the case of the deceleration parameter discussed previously, we have assumed that the 
astrophysical sources used to measure the Hubble parameter are isotropically distributed in space 
and they are simply comoving with the universal expansion. We have also situated the observer 
near the centre of an almost spherical bulk flow and ignored any anisotropies in the kinematics of 
the peculiar flow, as well as the peculiar motions of the sources.
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As in the case of the deceleration parameter discussed before, we need (the still 
unavailable) data for the gradient of the peculiar-velocity field to estimate the magni-
tude of the.H -dipole. On the other hand, the presence of the aforementioned gradient 
in Eq. (21) ensures that the magnitude of the induced dipole should be stronger on 
relatively smaller scales and it should decay away on progressively higher redshifts, 
where both the peculiar-velocity field and its gradient are expected to decay. Recall 
that the same also applies to the apparent dipole induced to the deceleration param-
eter by the observers’ peculiar motion (see previous section). The latter, however, 
has additional effects coming from the gradient of the “peculiar acceleration” (see 
Eq. (18) in Sect. 3.3). This is to be expected, since the deceleration parameter is 
essentially the time derivative of the Hubble parameter. Therefore, in principle the 
two dipoles should differ (to a larger or lesser degree) both in magnitude and in 
direction. 

4 Discussion 

We are all familiar from everyday life with the Doppler effect, which typically man-
ifests itself as an apparent shift in the frequency of a sound signal, in response to our 
motion towards the source, or away from it. The frequency appears to increase as we 
approach the source and to decrease, by an equal amount, as we recede from it. It 
goes without saying that the same also happens when the source moves towards, or 
away, from us. Therefore, observers moving relative to an isotropic distribution of 
identical sources, will detect an apparent dipolar anisotropy in the frequency along 
the direction of their motion. More specifically, the signal will appear to shift to 
higher frequencies towards the direction of the motion and to drop to equally lower 
frequencies towards the antipodal. Clearly, such an anisotropy is not real but a mere 
relative-motion effect. 

In cosmology, the most celebrated Doppler-like anisotropy is the temperature 
dipole seen in the CMB spectrum, which is not treated as a manifestation of some 
underlying anisotropy of the universe. Instead, the standard and most straightforward 
interpretation is that the observed dipole is a Doppler-like effect, triggered by our 
peculiar motion relative the highly isotropic distribution of the CMB photons. Based 
on that, the peculiar velocity of the Local Group of galaxies has been estimated close 
to 600 km/sec. Moreover, provided the Cosmological Principle holds, every observer 
in the universe should see an analogous dipole in their CMB spectrum, though not 
necessarily of the exact same magnitude and direction. This makes the coordinate 
system where the CMB dipole vanishes, the reference frame of the universe. 

Dipolar anisotropies are also the “trademark” signature of relative motion with 
respect to an isotropic distribution of sources. One therefore expects to find (apparent) 
dipoles when observing distant astrophysical sources, which are distributed more or 
less randomly and are far enough to simply follow the universal expansion. At present, 
the sources used to measure the Hubble and the deceleration parameters satisfy these 
requirements, at least to some degree. It should not come as a surprise therefore, that
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reports have appeared in the literature claiming the presence of dipole anisotropies 
in the sky-distribution of both of these cosmological parameters. This work provides 
a simple theoretical explanation to the dipoles reported in Cooke and Lynden-Bell 
(2010), Colin et al. (2019) and Migkas et al. (2021), as apparent Doppler-like effects 
triggered by our peculiar flow with respect to the CMB expansion. In so doing, we 
have employed linear cosmological perturbation theory and isolated any other type 
of anisotropy. These may include, for example, hemisphere anisotropies in the sky-
dietribution of the deceleration parameter due to the observers position away for the 
bulk-flow center, quadruple anisorropies in the observed .q-distribution caused by 
anisotropies in the bulk-flow kinematics, and so on (see Sect. 3.3 earlier and also 
footnote 2 in Sect. 1). 

Our starting point was a tilted almost-FRW cosmology, equipped with two fami-
lies of relatively moving observers. These are the fictitious observers following the 
idealised CMB frame and their real counterparts following the tilted frame and living 
in galaxies like our Milky Way (see Fig. 1 in Sect. 2.1). Comparing the deceleration 
and the Hubble parameters between the two frames, enabled us to distinguish the real 
effects from the apparent ones, namely from those caused by the observers’ pecu-
liar flow. To establish the relative-motion effects on the deceleration parameter, we 
defined and introduced the deceleration tensor, which extends its scalar counterpart 
and it can naturally incorporate all types of directional anisotropies (see definition (6) 
in Sect. 3.1). Our results showed that observers moving relative to the CMB frame, 
will assign higher/lower values to the deceleration parameter measured along their 
direction of motion and equally lower/higher values towards the antipodal. This will 
result into an apparent dipolar anisotropy in the sky distribution of the measured 
deceleration parameter, solely triggered by relative-motion effects. The magnitude 
of the induced dipole was found to depend on the gradient of the peculiar velocity 
(. ṽ), as well as on that of the peculiar acceleration (. ṽ′), both along the direction of 
the observers’ motion (see Eq. (18) in Sect. 3.3). Given that, we expect the strength 
of the apparent dipole to weaken on progressively larger scales (i.e. at higher red-
shifts). Also, the axis of the.q-dipole does not need to coincide with that of its CMB 
counterpart. 

The same principles also lead to an apparent dipolar anisotropy in the sky-
distribution of the Hubble parameter. This is to be expected, given the close relation 
between the two cosmological parameters (one is the time-derivative of the other). 
Assuming that the distant sources used in the measurements of the Hubble value 
are isotropically distributed in space, observers moving relative to these sources 
will “see” an apparent dipole forming along their direction of motion. This time, 
however, the decisive factor is only the gradient of the peculiar velocity (see Eq. (21) 
in Sect. 3.4), which implies that the deceleration and the Hubble dipoles should 
differ (to a lesser or larger degree) both in their magnitudes and in their directions. 
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